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Reversible Computation

Paradigm Reversible Computation
� Extends traditional forwards-only mode of computation
� Computation can run backwards as easily as forwards
� Aims to

– Deliver novel computing devices and software
– Enhance existing systems by equipping them with reversibility
– New book: Reversible Computation - Extending Horizons of Computing, Springer,

237 pages, 2020.

Applications
� Database transactions, fault detection/tolerance, debugging
� Parallel computing and synchronization (Optimistic PDES)
� Revolutionary reversible logic gates and circuits
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Use Case for Reversibility

Optimistic Parallel Discrete Event Simulation (PDES)
� Time Warp Algorithm

– Published 1985 TOPLAS, David Jefferson.
– Optimistic algorithm
– Key feature: distributed asynchronous rollback

? Global virtual time increases monotonically
? Allows to commit (=“clean up”) data stored for old events
? Simulation can run arbitrarily long

– World record 2013 (504 billion events per second (PHOLD benchmark)) at LLNL.
� Requires reversibility of event computation for rollback

– When events are detected to be in conflict, the effect of previous messages must be
reversed.

� Applications
– Network, traffic, particle simulations, etc.
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Reverse Computation - Computing backwards

Reverse Computation
Establishes a previous program state by computing backwards

Reversible and irreversible programs
� Reversible code

– e.g. forward: a=a+1; reverse: a=a-1;
� Irreversible code: destroys information

– e.g.: a=a*a;
� Transform irreversible code into reversible code:

– add code to store information that is destroyed otherwise
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Reversible Computation Approaches - Pros/Cons

Paradigm Reversible Computation - Software Reversibility
1 Reversible languages (Janus, CoreFun, ...)

– Functions can be called to compute forwards or backwards
– Programs written to be forward/backward deterministic
– Forward: conditionals+assertions, Backward: assertions+conditionals

2 Reverse code generators (Reverse C Compiler)
– Generates reverse C code from given C forward code
– Requires additional memory only when information destroyed
– In: Perumalla 2013, Introduction to Reversible Computing

3 Incremental checkpointing (C/C++ Backstroke)
– Can be applied to C++ language (reversible assignment ops)
– Templates, Virtual methods, exceptions, etc.
– Always requires additional memory
– Works with any data type (e.g. floating point types)
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Crout Matrix Multiply in Janus vs. Backstroke

Listing 1: Janus implementation of matrix multiplication [RevComp2020]
procedure matrix_mult(int A[][], int B[][], int n)
call crout(B, n) // In-place LDU decomposition of B
call multLD(A, B, n) // A := A*LD in place
call multU(A, B, n) // A := A*U in place
uncall crout(B, n) // Revert LDU decomposition to recover B

Listing 2: Backstroke-Instrumented (reversible) C++ Forward Code
template<typename myuint>
vo i d matmul ( i n t n , myuint A [ ] , myuint B [ ] , myuint AB [ ] ) {

f o r ( i n t i = 0 ; i<n ; i++) {
f o r ( i n t j = 0 ; j<n ; j++) {

myuint s = 0 ;
f o r ( i n t k = 0 ; k<n ; k++) {

s = s + A[ i ∗n+k ]∗B[ k∗n+j ] ;
}
( xpdes : : avpushT (AB[ i ∗n+j ] ) ) = s ;

} } }
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Matrix Multiply - Janus vs. Backstroke
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Benchmark model using matrix multiplication. Janus: in-place and step-wise reversible. 5/3 times more
arithmetic operations than standard multiply. To compute A := A × B: Crout algorithm for LDU
decomposition, B = L × D × U in place, then the sequence A := A × L, A := A × D, A := A × U. Revert LDU
decomposition in place, to recover B. 8000 LPs seq. [RevComp 2020 (LNCS 12070)].
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Backstroke : Kinetic Monte Carlo - C++ Model

Listing 3: Original Code
template <typename T,typename K> inline
T * Hash<T,K>::Insert(const K &key) {

int idx = (int) (hash_value<K>(key) % (
unsigned int) size);

used = used + 1;
table[idx] = new Link(key,table[idx]);

return &table[idx]->data;
}
template <typename T,typename K> inline
void Hash<T,K>::Remove(const K &key) {

int idx = (int) (hash_value<K>(key) % (
unsigned int) size);

Link *p = table[idx],*last = 0;
while(p != 0 && !(p->key == key)) {

last = p;
p = p->next;

}
if(p != 0) {

used = used - 1;
if(last == 0)

table[idx] = p->next;
else

last->next = p->next;
delete p;

}
}

Listing 4: Reversible Instrumented Code
template <typename T,typename K> inline
T * Hash<T,K>::Insert(const K &key) {

int idx = (int) (hash_value<K>(key) % (unsigned int)
size);

(xpdes::avpushT(used)) = used + 1;
(xpdes::avpushT(table[idx])) = (xpdes::

registerAllocationForRollbackT(new Link(key,
table[idx])));

return &table[idx]->data;
}
template <typename T,typename K> inline
void Hash<T,K>::Remove(const K &key) {

int idx = (int) (hash_value<K>(key) % (unsigned int)
size);

Link *p = table[idx],*last = 0;
while(p != 0 && !(p->key == key)) {

last = p;
p = p->next;

}
if(p != 0) {

(xpdes::avpushT(used)) = used - 1;
if(last == 0)

(xpdes::avpushT(table[idx])) = p->next;
else

(xpdes::avpushT(last->next)) = p->next;
(xpdes::registerDeallocationForCommitT(p));

}
}
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Evaluation

KMC Model - Instrumentation vs. Best Known Hand-Written
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� Slowdown factor the Backstroke instrumented code compared to best known hand written reverse code.
� Grain evolution sim - SPOCK: Scalable Parallel Optimistic Crystal Kinetics
� The big system consists of 768 × 768 spins, divided into a grid of 96 × 96 = 9216 LP’s. The small system

is 128× 128 spins, divided into a grid of 16× 16 = 256 LP’s. The simulations are run for 1000 time units.
[PADS 2016]
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Conclusion

� Janus: reversible programming language
– deterministic in both directions

� Backstroke: incremental checkpointing
– “Memory-modification traces” (assignment,alloc,dealloc)
– Transactional - Forward/Reverse/Commit paradigm

� Use case: Optimistic PDES
– Time Warp: distributed asynchronous lock-free rollback

Tool: Backstroke 2.1.4, https://github.com/LLNL/backstroke
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