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[NON-EXHAUSTIVE) TOPICS

MACHINE PROGRAMMING USING APPROXIMATE AND PRECISE METHODS
EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

HUMAN-INTENDED AND MACHINE-INTENDED PROGRAMMING LANGUAGES

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY ETHICS OF MACHINE PROGRAMMING

INTENTIONAL PROGRAMMING AND BEHAVIORS
LEARNING FOR ADAPTIVE SOFTWARE (AND HARDWARE)
THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP
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SOME BACKGROUND
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THE THREE PILLARS OF MACHINE PROGRAMMING (MP)

' Adaptation

 MP is the automation of software development
— Intention: Discover the intent of a programmer
— Invention: Create new algorithms and data structures
— Adaption: Evolve in a changing hardware/software world
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WHY GALL IT MACHINE PROGRAMMING?
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WHY GALL IT MACHINE PROGRAMMING?

= Alternatives:

— Program Synthesis

— Al/ML for Code
— Software 2.0
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WHY GALL IT MACHINE PROGRAMMING?

= Alternatives:

— Program Synthesis (historically w/ formal methods)
— Al/ML for Code (it's not just Al/ML)

— Software 2.0 (what does this mean?)
— And Software 3.0, and 4.0, and 5.0?

= Aim is to avoid confusion and broaden scope
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MP USING APPROXIMATE AND PREGISE METHODS

APPROXIMATE PREGISE

Machine Learning Formal Methods
(e.g., Neural Networks, Reinforcement
Learning, Genetic Algorithms, Bayesian
Networks, etc.)

(e.g., Formal Verifiers, Spatial and
Temporal Logics, Formal Program
Synthesizers, etc.)

Progressively More Approximate Progressively More Precise

Software: Programming Languages,
Algorithms, Data Structures, etc.
Hardware: Compute,
Communication, & Memory

Architectures, etc.
O = Main Components Used in MP Systems

O= Main Techniques Used to Build by MP
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MP USING APPROXIMATE AND PREGISE METHODS

EMERGING SOLUTIONS USING A FUSION OF BOTH
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MP USING APPROXIMATE AND PREGISE METHODS

EMERGING SOLUTIONS USING A FUSION OF BOTH

Learning to Infer Program Sketches

Maxwell Nye !> Luke Hewitt!2> Joshua Tenenbaum'2* Armando Solar-Lezama?

Abstract

Our goal is to build systems which write code
automatically from the kinds of specifications hu-
mans can most easily provide, such as examples
and natural language instruction. The key idea of
this work is that a flexible combination of pattern
recognition and explicit reasoning can be used
to solve these complex programming problems.
We propose a method for dynamically integrating
these types of information. Our novel intermedi-
ate representation and training algorithm allow a
program synthesis system to learn, without direct
supervision, when to rely on pattern recognition
and when to perform symbolic search. Our model
matches the memorization and generalization per-
formance of neural synthesis and symbolic search,
respectively, and achieves state-of-the-art perfor-
mance on a dataset of simple English description-
to-code programming problems.

way to combine these language constructs to construct an
expression with the desired behavior.

A moderately experienced programmer might immediately
recognize, from learned experience, that because the output
list is always a subset of the input list, a filter function
is appropriate:

filter (input, <HOLE>)

where <HOLE> is a lambda function which filters elements
in the list. The programmer would then have to reason about
the correct code for <HOLE>.

Finally, a programmer very familiar with this domain might
immediately recognize both the need for a filter func-
tion, as well as the correct semantics for the lambda function,
allowing the entire program to be written in one shot:

filter (input, lambda x: x%2==0)

CLR 2019

An Abstraction-Based Framework
for Neural Network Verification

Yizhak Yisrael Elboher!, Justin Gottschlich?, and Guy Katz!(®)

! The Hebrew University of Jerusalem, Jerusalem, Israel
{yizhak.elboher,g.katz}@mail.huji.ac.il
2 Intel Labs, Santa Clara, USA
justin.gottschlich@intel.com

GAV 2020

Abstract. Deep neural networks are increasingly being used as con-
trollers for safety-critical systems. Because neural networks are opaque,
certifying their correctness is a significant challenge. To address this issue,
several neural network verification approaches have recently been pro-
posed. However, these approaches afford limited scalability, and applying
them to large networks can be challenging. In this paper, we propose a
framework that can enhance neural network verification techniques by
using over-approximation to reduce the size of the network—thus mak-
ing it more amenable to verification. We perform the approximation such
that if the property holds for the smaller (abstract) network, it holds
for the original as well. The over-approximation may be too coarse, in
which case the underlying verification tool might return a spurious coun-
terexample. Under such conditions, we perform counterexample-guided
refinement to adjust the approximation, and then repeat the process.
Our approach is orthogonal to, and can be integrated with, many exist-
ing verification techniques. For evaluation purposes, we integrate it with
the recently proposed Marabou framework, and observe a significant
improvement in Marabou’s performance. Our experiments demonstrate
the great potential of our approach for verifying larger neural networks.
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MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?

Learning to Optimize

Ke Li Jitendra Malik
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720
United States
{ke.li,malik}@eecs.berkeley.edu

ICLR20T7 Abstract

Algorithm design is a laborious process and often requires many iterations of
ideation and validation. In this paper, we explore automating algorithm design and
present a method to learn an optimization algorithm, which we believe to be the
first method that can automatically discover a better algorithm. We approach this
problem from a reinforcement learning perspective and represent any particular
optimization algorithm as a policy. We learn an optimization algorithm using
guided policy search and demonstrate that the resulting algorithm outperforms
existing hand-engineered algorithms in terms of convergence speed and/or the final
objective value.

A Zero-Positive Learning Approach for
Diagnosing Software Performance Regressions

Mejbah Alam Justin Gottschlich
Intel Labs Intel Labs
me jbah.alam@intel.com justin.gottschlich@intel.com
Nesime Tatbul Javier Turek
Intel Labs and MIT Intel Labs
tatbul@csail.mit.edu javier.turek@intel.com
Timothy Mattson Abdullah Muzahid
Intel Labs Texas A&M University
timothy.g.mattson@intel.com abdullah.muzahid@tamu.edu

NEURIPS 2019 Abstract

The field of machine programming (MP), the automation of the development
of software, is making notable research advances. This is, in part, due to the
emergence of a wide range of novel techniques in machine learning. In this paper,

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM




MACHINE PROGRAMMING + DEEP LEARNING = NEURAL PROGRAMMING?

— SOME QUESTIONS:

ONLY IMPROVED BY RETRAINING?
UNDERSTANDABLE, INTERPRETABLE, DEBUGGABLE?

(HALIDE'S APPROACH IS DIFFERENT - WHICH YOU'LL HEARMORE ABOUT) |

))))))

MP = MACHINE PROGRAMMING, DL = DEEP LEARNING, QUESTIONS | COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
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EXTRACTION OF EVBLVINGANB-MULT-BIMENSIONAL CODE SEMANTICS
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EXTRACTION OF CODE SEMANTICS

= Why do we care about code
semantics?
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EXTRACTION OF CODE SEMANTICS

- Why do we care about code HOPPITY: LEARNING GRAPH TRANSFORMATIONS TO
DETECT AND FIX BUGS IN PROGRAMS

semantics?
Elizabeth Dinella* Hanjun Dai* Ziyang Li
University of Pennsylvania Google Brain University of Pennsylvania
Mayur Naik Le Song Ke Wang
University of Pennsylvania Georgia Tech Visa Research
[CLR 2020 ABSTRACT

We present a learning-based approach to detect and fix a broad range of bugs in
Javascript programs. We frame the problem in terms of learning a sequence of
graph transformations: given a buggy program modeled by a graph structure, our
model makes a sequence of predictions including the position of bug nodes and
corresponding graph edits to produce a fix. Unlike previous works built upon deep
neural networks, our approach targets bugs that are more diverse and complex in
nature (i.e. bugs that require adding or deleting statements to fix). We have realized
our approach in a tool called HOPPITY. By training on 290,715 Javascript code
change commits on Github, HOPPITY correctly detects and fixes bugs in 9,490 out
of 36,361 programs in an end-to-end fashion. Given the bug location and type of
the fix, HOPPITY also outperforms the baseline approach by a wide margin.

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



EXTRACTION OF CODE SEMANTICS

- Why do we care about code HOPPITY: LEARNING GRAPH TRANSFORMATIONS TO
DETECT AND FIX BUGS IN PROGRAMS

semantics?
Elizabeth Dinella* Hanjun Dai* Ziyang Li
University of Pennsylvania Google Brain University of Pennsylvania
Mayur Naik Le Song Ke Wang
University of Pennsylvania Georgia Tech Visa Research
[CLR 2020 ABSTRACT

We present a learning-based approach to detect and fix a broad range of bugs in
Javascript programs. We frame the problem in terms of learning a sequence of
graph transformations: given a buggy program modeled by a graph structure, our
model makes a sequence of predictions including the position of bug nodes and
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EXTRACTION OF CODE SEMANTICS
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WHY EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTIGS?
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WHY EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTIGS?

= Code that is used tends to be maintained

— “Software that is used is never finished”

= A code snippet may have multiple semantic meanings

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Software Language Comprehension using a Program-Derived
Semantic Graph

Roshni G. Iyer Yizhou Sun
University of California, Los Angeles, USA University of California, Los Angeles, USA
roshnigiyer@cs.ucla.edu yzsun@cs.ucla.edu
Wei Wang Justin Gottschlich
University of California, Los Angeles, USA Intel Labs, USA
weiwang@cs.ucla.edu University of Pennsylvania, USA

PREPRI"T justin.gottschlich@intel.com
ABSTRACT Capturing Semantic Information
Traditional code transformation structures, such as an abstract (" sealtevetol ]
syntax tree, may have limitations in their ability to extract seman- SYAL Level: -n
tic meaning from code. Others have begun to work on this issue,
such as the state-of-the-art Aroma system and its simplified parse Z::Ll t:\‘/’:: ol St Higher
tree (SPT). Continuing this research direction, we present a new gl
graphical structure to capture semantics from code using what we :yi:‘\::::j”""" _| seAtteve2 | Abstraction
refer to as a program-derived semantic graph (PSG). The principle agnostic levels b i
behind the PSG is to provide a single structure that can capture
program semantics at many levels of granularity. Thus, the PSG is
hierarchical in nature. Moreover, because the PSG may have cycles
due to dependencies in semantic layers, it is a graph, not a tree. e |
In this paper, we describe the PSG and its fundamental structural Beusicar=, L
differences to the Aroma’s SPT. Although our work in the PSGisin =~ oo SeAlleveln | I Codelevel
its infancy, our early results indicate it is a promising new research ALk D
direction to explore to automatically extract program semantics. e ElE) {::N;; of
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WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Software Language Comprehension using a Program-Derived Semantic Graph Preprint, April, 2020

Implementation 1

0 signed int recursive_power (signed int X, unsigned int y)
1{
2 if (y == 0)
Deta oata Code- =G Forced- 3 return 1;
! 4 else if (y % 2 == 0)
’ 5 return recursive power(x, y / 2) *
Ty == Fecuson . ) recursive_power(x, y / 2);
else
7 return x * recursive power(x, y / 2) *
e recursive power(x, y / 2);
8 }

code-specific
level

Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.
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WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Sofwar Langasge G g Progran Derived Semantc Gral Prprin, Apr, 2120
) Implementation 1
¥
(o 0 signed int recursive power (signed int x, unsigned int y)
15 11 —
2 if (y == 0)
3 return 1;
4 else if (y $ 2 == 0)
5 return recursive power(x, y / 2) *
recursive power(x, y / 2);
6 else =
7 return x * recursive power(x, y / 2) *
recursive power(x, y / 2);
Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function 8 )
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.
TR = %& Implementation 2
= 0 signed int iterative power (signed int x, unsigned int y)
1
2 signed int val = 1;
3 while (y > 0) {
4 val *= x;
5 y = 1;
6 }
7 return val;
8 }

Figure 6: PSG of Iterative Power Function. The shaded region denotes overlap in the nodes of the PSG for the recursive power function
shown in Figure 5. These total 19 of the 27 total nodes, a 70.37% overlap.
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WHY MULTI-DIMENSIONAL CODE SEMANTIGS?

Implementation 1

Both implement exponentiation (only integers) o signed int recursive power(signed int x, unsigned int y)
1
Both_are correct 2 1f (y = 0}
One is recursive 3 return 1;
— . 4 else if (y % 2 == 0)
One Is Iterative 5 return recursive power(x, y / 2) *
One has three branch paths co L SRSREE s ReMEnEg Sk
One has one branch path 7 return x * recursive power(x, y / 2) *
recursive power(x, y / 2);
8 )

Implementation 2

0 signed int iterative power (signed int x, unsigned int y)

o I
Each of these properties may be useful e
to know in certain scenarios : M
YVei== ;
6 }
Can influence call stacks, speculative L S

execution (branch prediction), etc.
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WHY MULTI-DIMENSIONAL CODE SEMANTICS?
Both implement exp SOME CHALLENGES: S

Both are correct
One is recursive
One is iterative , v/ 2) *

One has three branc lﬂ'l's m: cunE / 2);

One has one branch ber(x, v / 2) *

FEW SEMANTIC CODE LABELS

ach of these prop,FINDCLEVER WAYS TOLIFT SEMANTICS?
to knowin certain { | [FT SEMANTICS WITHOUT COMPILATION?
Can influence cally  Ip SMANTICS FROM SURROUNDINGS?

execution (branch

QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



[NON-EXHAUSTIVE) TOPICS
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EXTRACTION OF EVOLVING AND MULTI-DIMENSIONAL CODE SEMANTICS
NOVEL STRUCTURAL REPRESENTATIONS OF CODE

HUMAN-INTENDED AND MACHINE-INTENDED PROGRAMMING LANGUAGES

AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY ETHICS OF MACHINE PROGRAMMING

INTENTIONAL PROGRAMMING AND BEHAVIORS
LEARNING FOR ADAPTIVE SOFTWARE (AND HARDWARE)
THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM 20 (intel



NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Why do we need new code structures?
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NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Why do we need new code structures?

MISIM: An End-to-End Neural Code Similarity

System
Fangke Ye * Shengtian Zhou *
Intel Labs and Georgia Institute of Technology Intel Labs
yefangke@gatech.edu shengtian.zhou@intel.com
. . Anand Venkat R M: Nesime Tatbul
Aroma: Code Recommendation via Structural Code Search Tntel Labs Tntel Labs and MIT el Labs and MIT

SIFEI LUAN, Facebook, USA

DI YANG?, University of California, Irvine, USA

CELESTE BARNABY, Facebook, USA

KOUSHIK SENT, University of California, Berkeley, USA

SATISH CHANDRA, Facebook, USA 00PSLA 2019

Programmers often write code that has similarity to existing code written somewhere. A tool that could help
programmers to search such similar code would be immensely useful. Such a tool could help programmers
to extend partially written code snippets to completely implement necessary functionality, help to discover
extensions to the partial code which are commonly included by other programmers, help to cross-check
against similar code written by other programmers, or help to add extra code which would fix common
mistakes and errors. We propose Aroma, a tool and technique for code recommendation via structural code
search. Aroma indexes a huge code corpus including thousands of open-source projects, takes a partial code
snippet as input, searches the corpus for method bodies containing the partial code snippet, and clusters and
intersects the results of the search to recommend a small set of succinct code snippets which both contain the
query snippet and appear as part of several methods in the corpus. We evaluated Aroma on 2000 randomly
selected queries created from the corpus, as well as 64 queries derived from code snippets obtained from
Stack Overflow, a popular website for discussing code. We implemented Aroma for 4 different languages, and
developed an IDE plugin for Aroma. Furthermore, we conducted a study where we asked 12 programmers to
complete programming tasks using Aroma, and collected their feedback. Our results indicate that Aroma is
capable of retrieving and recommending relevant code snippets efficiently.

anand.venkat@intel.com ryanmarcus@csail.mit.edu tatbul@csail.mit.edu

Jesmin Jahan Tithi Paul Petersen
Intel Labs Intel
jesmin.jahan.tithi@intel.com paul.petersen@intel.com
Timothy Mattson Tim Kraska Pradeep Dubey
Intel Labs MIT Intel Labs

timothy.g.mattson@intel.com kraska@mit.edu pradeep.dubey@intel.com

Vivek Sarkar Justin Gottschlich
Georgia Institute of Technology Intel Labs and University of Pennsylvania
vsarkar@gatech.edu justin.gottschlich@intel.com

PREPRI"T Abstract

Code similarity systems are integral to a range of applications from code recom-
mendation to automated construction of software tests and defect mitigation. In
this paper, we present Machine Inferred Code Similarity (MISIM), a novel end-to-
end code similarity system that consists of two core components. First, MISIM
uses a novel context-aware semantic structure, which is designed to aid in lifting
semantic meaning from code syntax. Second, MISIM provides a neural-based
code similarity scoring algorithm, which can be implemented with various neural
network architectures with learned parameters. We compare MISIM to three state-
of-the-art code similarity systems: (i) code2vec, (ii) Neural Code Comprehension,
and (iii) Aroma. In our experimental evaluation across 45,780 programs, MISIM
consistently outperformed all three systems, often by a large factor (upwards of
40.6x).




NOVEL STRUCTURAL REPRESENTATIONS OF CODE

= Aroma introduced the simplified parse tree

= MISIM introduced the context-aware semantics structure

MISIM: An End-to-End Neural Code Similarity

System

» These structures have led to state-of-the-art accuracy

Aroma: Code Recommendation via Structural Code Search

anand.venkat@intel.com

SIFEI LUAN, Facebook, USA

DI YANG?, University of California, Irvine, USA
CELESTE BARNABY, Facebook, USA

KOUSHIK SENT , University of California, Berkeley, USA

SATISH CHANDRA, Facebook, USA 00PSLA 2019

Programmers often write code that has similarity to existing code written somewhere. A tool that could help
programmers to search such similar code would be immensely useful. Such a tool could help programmers
to extend partially written code snippets to completely implement necessary functionality, help to discover
extensions to the partial code which are commonly included by other programmers, help to cross-check
against similar code written by other programmers, or help to add extra code which would fix common
mistakes and errors. We propose Aroma, a tool and technique for code recommendation via structural code
search. Aroma indexes a huge code corpus including thousands of open-source projects, takes a partial code
snippet as input, searches the corpus for method bodies containing the partial code snippet, and clusters and
intersects the results of the search to recommend a small set of succinct code snippets which both contain the
query snippet and appear as part of several methods in the corpus. We evaluated Aroma on 2000 randomly
selected queries created from the corpus, as well as 64 queries derived from code snippets obtained from
Stack Overflow, a popular website for discussing code. We implemented Aroma for 4 different languages, and
developed an IDE plugin for Aroma. Furthermore, we conducted a study where we asked 12 programmers to
complete programming tasks using Aroma, and collected their feedback. Our results indicate that Aroma is
capable of retrieving and recommending relevant code snippets efficiently.
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PREPRINT

Code similarity systems are integral to a range of applications from code recom-
mendation to automated construction of software tests and defect mitigation. In
this paper, we present Machine Inferred Code Similarity (MISIM), a novel end-to-
end code similarity system that consists of two core components. First, MISIM
uses a novel context-aware semantic structure, which is designed to aid in lifting
semantic meaning from code syntax. Second, MISIM provides a neural-based
code similarity scoring algorithm, which can be implemented with various neural
network architectures with learned parameters. We compare MISIM to three state-
of-the-art code similarity systems: (i) code2vec, (ii) Neural Code Comprehension,
and (iii) Aroma. In our experimental evaluation across 45,780 programs, MISIM
consistently outperformed all three systems, often by a large factor (upwards of
40.6x).

Abstract
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NOVEL STRUCTURAL REPRESENTATIONS OF CODE
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Automatically Translating Image Processing Libraries to Halide

MAAZ BIN SAFEER AHMAD, University of Washington, Seattle
JONATHAN RAGAN-KELLEY, University of California, Berkeley
ALVIN CHEUNG, University of California, Berkeley

SHOAIB KAMIL, Adobe

void blur(uint8_t+ dst, uints_ts src, int rows, int cols,
int rowdytes)
inte tp = new int(rowssromBytes];

for (ke = i = pouei ) £ roi = [(0, cols), (0, rows)]

mm ’ terms = [sre(x = 1,3), sre(x,y), sre(x +1,3), 3]

tmp(x.y) = (terms[0] + terms[1] + terms[2]) / terms[3]

: ols; co) (
tmplc] = (srele-1] + srele] + srcle+11)

tmp 4= rouBytes;
src 4= rouBytes; 1

3
thp = rowssroytes; // reset pointer locat
vertical b

for (int r = 0; r < rows; r+0) {
for (int ¢ = 0; ¢ < cols; c+) (
int sum = (tmplc-romBytes] + taplc] +
taplciroudytes));
dstlc] = sum

roi = [(0, cols), (0, rows)]
terms = [tmp(x,y - 1), tmp(x.y), tmp(x.y + 1), 3]
dst(x,) = (terms{0] + terms{1] + terms[2]) / terms(3]

dst += rowdytes;
tmp += rowBytes;
)

)
Fig. 1. DEXTER parses the input C++ function (shown on the left) into a DAG of smaller stages, then uses our 3-step synthesis algorithm to infer the semantics

Someaon

SIGGRAPH ASIA 2019

Func blur(Func dst, Func src, int rows, int cols)
«

RDom (@, cols, 0, rows);
Func tap;
Var i, 3;

izontal bl

p(1,3) = (sre(i=1,3) + sre(i,3) + sre(i+,3))

vertical blu

dst(i,j) = undef<uints_t>();

dst(r.x,r.y) = (tap(r.x,r.y-1) + tap(r.x,r.y)
+ tap(rox,rye1) / 3

return dst;

of each stage, expressed in a high-level IR (middle). Finally, code generation rules compile the IR specifications into executable Halide code (right).

Automatically Scheduling Halide Image Processing Pipelines

Ravi Teja Mullapudi* Andrew Adams!

*Carnegie Mellon University

Abstract

The Halide image processing language has proven to be an effec-
tive system for authoring high-performance image processing code.
Halide programmers need only provide a high-level strategy for map-
ping an image processing pipeline to a parallel machine (a schedule),
and the Halide compiler carries out the mechanical task of generating
platform-specific code that implements the schedule. Unfortunately,
designing high-performance schedules for complex image process-
ing pipelines requires substantial knowledge of modern hardware
hitecture and code-optimization techniq In this paper we
provide an algorithm for automatically generating high-performance
schedules for Halide programs. Our solution extends the function
bounds analysis already present in the Halide compiler to automat-
ically perform locality and paralleli hancing global prog;
transformations typical of those employed by expert Halide develop-
ers. The algorithm does not require costly (and often impractical)
auto-tuning, and, in seconds, generates schedules for a broad set
of image processing benchmarks that are performance-competitive
with, and often better than, schedules manually authored by expert
Halide developers on server and mobile CPUs, as well as GPUs.

Keywords: image processing, optimizing compilers, Halide

C «C . bodol

— Graphics systems and

interfaces;

Dillon Sharlet!

Jonathan Ragan-Kelley' Kayvon Fatahalian*®
$Google tStanford University
algorithm’s ion on a hine (called a schedule). The Halide

compiler then handles the tedious, mechanical task of generating

platform-specific code that imp the (e.g., sp
threads, managing buffers, generating SIMD instructions).

g

Although Halide provides high-level abstractions for expressing
schedules, designing schedules that perform well on modern hard-
ware is hard; it requires expertise in modern optimization techniques
and hardware architectures. For example, around 70 software en-
gineers at Google currently write image processing algorithms in
Halide, but they rely on a much smaller cadre of Halide scheduling
experts to produce the most efficient implementations. Further, pro-
duction image processing pipelines are long and complex, and are
difficult to schedule even for the best Halide programmers. Arriving
at a good schedule remains a laborious, iterative process of schedule
tweaking and performance measurement. Also, in large produc-
tion pipeli software engi ing iderations (e.g., modularity,
code reuse) may preclude experts from having the global program
knowledge needed to create optimal schedules.

SIGGRAPH 2016
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» This heterogeneity is generating multiplicative complexity

Target
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I ft Input ] Output with
eta ot center Rl senerstor synthesized
Leveraging DSLs made easy i -
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_ - I A

Verified lifting has been the underlying technology used to build the following compilers:

People
Metalift is jointly developed by the folks at the University of Washington Programming Languages
and Software Engineering Research Group, Adobe Research, and Intel Labs. The following are

Dexter is a compiler that translates image processing kernels from C to Halide.

the main developers of MetalLift:
m Casper is a compiler that translates sequential Java to Spark and Hadoop.

) -
Maaz Ahmad [ a9 STNG STNG is a compiler that enables Fortran kernels to leverage GPUs by compiling
them into the Halide DSL.

JUSTIN.GOTTSCHLICH@INTEL.COM



AUTOMATION FOR SOFTWARE AND HARDWARE HETEROGENEITY

SOME QUESTIONS:

WHAT ARE THE QUALITY METRICS FOR TRANSLATION?

CORRECT & PERFORMANGE (ARE PROBABLY 0BVIOUS)

ttttt

WHAT ABOUT SECURITY, MAINTAINABILITY, POWER FOOTPRINT, ETC.?
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= Focus on what the intention is, not how that intention may manifest
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LEARNING TO REPRESENT PROGRAMS Skip Blocks: Reusing Execution History to Accelerate Web

WITH PROPERTY SIGNATURES Scripts

SARAH CHASINS, University of California, Berkeley, USA

Augustus Odena, Charles Sutton RASTISLAV BODIK, University of Washington, USA

Google Research

{augustusodena, charlessutton}@google.com With more and more web scripting languages on offer, programmers have access to increasing language

ABSTRACT

We introduce the notion of property signatures, a representation for programs and
program specifications meant for consumption by machine learning algorithms.
Given a function with input type 7;,, and output type 7,,, a property is a function
of type: (Tin, Tout) — Bool that (informally) describes some simple property
of the function under consideration. For instance, if 7;,, and 7., are both lists
of the same type, one property might ask ‘is the input list the same length as the
output list?’. If we have a list of such properties, we can evaluate them all for our
function to get a list of outputs that we will call the property signature. Crucially,
we can ‘guess’ the property signature for a function given only a set of input/output
pairs meant to specify that function. We discuss several potential applications of
property signatures and show experimentally that they can be used to improve
over a baseline synthesizer so that it emits twice as many programs in less than
one-tenth of the time.

ICLR 2020

support for web scraping tasks. However, in our experiences collaborating with data scientists, we learned that
two issues still plague long-running scraping scripts: i) When a network or website goes down mid-scrape,
recovery sometimes requires restarting from the beginning, which users find frustratingly slow. ii) Websites
do not offer atomic snapshots of their databases; they update their content so frequently that output data is
cluttered with slight variations of the same information — e.g., a tweet from profile 1 that is retweeted on
profile 2 and scraped from both profiles, once with 52 responses then later with 53 responses.

We introduce the skip block, a language construct that addresses both of these disparate problems. Pro-
grammers write lightweight annotations to indicate when the current object can be considered equivalent to a
previously scraped object and direct the program to skip over the scraping actions in the block. The construct
is hierarchical, so programs can skip over long or short script segments, allowing adaptive reuse of prior work.
After network and server failures, skip blocks accelerate failure recovery by 7.9x on average. Even scripts that
do not encounter failures benefit; because sites display redundant objects, skipping over them accelerates
scraping by up to 2.1x. For longitudinal scraping tasks that aim to fetch only new objects, the second run
exhibits an average speedup of 5.2x. Our small user study reveals that programmers can quickly produce skip
block annotations.

CCS Concepts: « Software and its engineering — Control structures;

00PSLA 2017
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HALIDE: A DOMAIN-SPEGIFIC & INTENTIONAL
PROGRAMMING LANGUAGE (HETEROGENEQUS HARDWARE)

Halide

Domain-specific language for imaging and learning

Intention Adaptation

/0:9
D Algorithm Schedule

o 8 What to
& compute - compute it

Credit: Andrew Adams et al.
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HALIDE: SUPER-HUMAN PERFORMANGCE

A new automatic scheduling algorithm for Halide
Speed-up (higher is better)

2.5x

Larger search space
2 X ' - includes more Halide scheduling
features
1.5x : - extensible

1 x Hybrid cost model

- Mix of machine learning and
hand-designed terms

- Can model complex architectures

0.5x -

0x — —

Prior work Expert This paper
(Mullapudi 2016) Humans
Credit: Andrew Adams et al. 5
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earning to Optimize Halide with Tree Search and Random Programs

HALIDE: SUPER-HUMAN PERFORMANGCE

SOME QUESTIONS:

HALIDE IS DOMAIN-SPEGIFIC, CAN WE DO THIS GENERALLY?

CAN WE PROVIDE INTENTION-BASED INTERFAGES T0 EXISTING
WIDELY USED LANGUAGES (C++, PYTHON, JAVASCRIPT)?

o

(Mullapudi

Credit: Andrew Adams etal. 1o
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THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP
Challenges:

= Computational workload via FM and ML may be large
= MP datais large, can be dense, and is mostly unlabeled

= Given this, what does the future MP hardware look like?

FM = FORMAL METHODS, MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP
Challenges:

= Computational workload via FM and ML may be large
= MP datais large, can be dense, and is mostly unlabeled

= Given this, what does the future MP hardware look like?
| have no idea.

But | do have ideas about things we can think about.

FM = FORMAL METHODS, MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM



THE FUTURE OF DATA, COMMUNICATION, AND COMPUTATION FOR MP

Some open questions:

= What interfaces do we expect for expression of intention?

— What ramifications are associated with those?

» What are the core techniques used for MP?

— What are the data, communication, and compute implications?

* We have a massive big data problem in front of us
— As of summer 2020, there were over 200M+ github repos
— Code is multi-dimensional by nature

— The size and density of this data implies new frontiers of hardware

MP = MACHINE PROGRAMMING, QUESTIONS / COMMENTS: JUSTIN.GOTTSCHLICH@INTEL.COM
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THE ERA OF MACHINE PROGRAMMING IS NOW

We are on the verge of a revolutionary shift
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THE ERA OF MACHINE PROGRAMMING IS NOW

We are on the verge of a revolutionary shift

Many institutions are heavily investing in MP

— Many large tech companies (Amazon, Google, IBM, Intel, Microsoft, etc.)
— Both research and engineering

— Dozens of startups to solve a single MP problem

— Several leading academic institutions
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THE ERA OF MACHINE PROGRAMMING IS NOW

We are on the verge of a revolutionary shift

Many institutions are heavily investing in MP

— Many large tech companies (Amazon, Google, IBM, Intel, Microsoft, etc.)
— Both research and engineering

— Dozens of startups to solve a single MP problem

— Several leading academic institutions

We can democratize the creation of software with MP

— Imagine a global population, where everyone can express their creativeness
— Imagine a world where coders only spent time expressing our intentions, not fixing code

— What kind of scientific, artistic, innovative things might we discover?

Looking forward to working with many (all?) of you!
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