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AUTOMATING EMPIRICAL PERFORMANCE TUNING
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For a given application and target platform



SEARCH IN AUTOTUNING

▪Alternatives:
– Complete enumeration

• Prohibitively expensive (1050 variants!)
• Unnecessary?

–  Pruning
• Careful balancing act (between aggressive and conservative)

▪Helpful (necessary?) precursors: The expert still plays a role!
– Identify variable space (parameters to be tuned, ranges, constraints)
– Quantify measurement limitations and noise
– Incorporate known models and meaningful objectives
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IS A SOPHISTICATED SEARCH ALGORITHM 
NEEDED?
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[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs better 
than tested alternatives as the number of tuning parameters grows

Depends on distribution of high-performing variants
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Depends on structure of the (modeled) search space

IS A SOPHISTICATED SEARCH ALGORITHM 
NEEDED?



6

SEARCH AS OPTIMIZATION
Finding the best configuration is a mathematical optimization 
problem

x: multidimensional parameterization (compiler type, compiler flags, unroll/tiling 
factors, internal tolerances, . . . ) for a code variant

f(x): empirical performance metric such as FLOPS, power, or run time (requires a 
run)



OPTIMIZATION CHALLENGES

▪Black box, expensive, noisy
▪No derivatives
▪Discontinuity/unrelaxable parameter values
▪Cliffs, multiple local solutions
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PREVIOUS AUTOTUNING SEARCH 
ALGORITHMS
▪ [Seymour, You, & Dongarra, Cluster Computing ’08] and [Kisuki, Knijnenburg, & 

O’Boyle, PACT ’00] compared several global and local algorithms
–  Random search outperforms a genetic algorithm, simulated annealing, particle 

swarm, Nelder-Mead, and orthogonal search
–  Large number of high-performing parameter configurations → easy to find one of 

them
▪ [Norris, Hartono, & Gropp, Computational Science ’07] used several global and local 

algorithms but no comparison
– Nelder-Mead simplex method, simulated annealing, a genetic algorithm

▪ Other local search algorithms without comparison to global search:
– Orthogonal search in ATLAS [Whaley & Dongarra, SC ’98]
– Pattern search in loop optimization [Qasem, Kennedy & Mellor-Crummey SC ’06]
– Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen, Chame, 

Hall, & Hollingsworth, IPDPS ’09] 8
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MACHINE-LEARNING BASED SEARCH

–Framework:
• Initialization phase

– Random or Latin hypercube  
sampling

• Iterative phase
– Fit model
– Sample using the model
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Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)



BAYESIAN OPTIMIZATION 
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RESULTS
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Edison@Nersc
Each node: 12-core Intel "Ivy Bridge" processor at 2.4 GHz
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THANK YOU!
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https://github.com/ytopt-team/ytopt


