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UTOMATING EMPIRICAL PERFORMANCE TUNING
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SEARCH IN AUTOTUNING

= Alternatives:
— Complete enumeration
» Prohibitively expensive (10°° variants!)
« Unnecessary?
— Pruning
 Careful balancing act (between aggressive and conservative)
= Helpful (necessary?) precursors: he expert still plays a role!
— ldentify variable space (parameters to be tuned, ranges, constraints)

— Quantify measurement limitations and noise
— Incorporate known models and meaningful objectives
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IS A SOPHISTICATED SEARCH ALGORITHM
NEEDED?

[Seymour, You, & Dongarra, Cluster Computing '08]: Random search performs better
than tested alternatives as the number of tuning parameters grows
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IS A SOPHISTICATED SEARCH ALGORITHM
NEEDED?
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SEARCH AS OPTIMIZATION

Finding the best configuration is a mathematical optimization
problem

mxm{f(x) = (z,28,20) € D C R"}

X: multidimensional parameterization (compiler type, compiler flags, unroll/tiling
factors, internal tolerances, . . . ) for a code variant

f(X) empirical performance metric such as FLOPS, power, or run time (requires a

run) .
bound: unroll € [1,...,30]; RT = 2°, i=[0,1,2,3]

known: (RTr+ RT; < 150) (cheap); power consumption < 90 W
(expensive)

hidden: transformation errors (relatively cheap), compilation
(expensive), and run time (very expensive) failures
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OPTIMIZATION CHALLENGES

=Black box, expensive, noisy

*No derivatives

=Discontinuity/unrelaxable parameter values
=Cliffs, multiple local solutions
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PREVIOUS AUTOTUNING SEARCH
ALGORITHMS

= [Seymour, You, & Dongarra, Cluster Computing '08] and [Kisuki, Knijnenburg, &
O’Boyle, PACT '00] compared several global and local algorithms
— Random search outperforms a genetic algorithm, simulated annealing, particle
swarm, Nelder-Mead, and orthogonal search
— Large number of high-performing parameter configurations — easy to find one of
them

= [Norris, Hartono, & Gropp, Computational Science '07] used several global and local

algorithms but no comparison
— Nelder-Mead simplex method, simulated annealing, a genetic algorithm

= Other local search algorithms without comparison to global search:
— Orthogonal search in ATLAS [Whaley & Dongarra, SC '98]
— Pattern search in loop optimization [Qasem, Kennedy & Mellor-Crummey SC '006]
— Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen, Chame,
Hall, & Hollingsworth, IPDPS ’09] Argonne &
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MACHINE-LEARNING BASED SEARCH

Unevaluated parameter

—_ FrameWOrk configurations

— Random or Latin hypercube
sampling
* |lterative phase | 0 ,
— Fit model Performance * i ; 7“;:; ﬁ“ i Prmeisirjng
) metrics " " Y N — ) = = configurations
— Sample using the model i i | “

Evaluation

Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)
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BAYESIAN OPTIMIZATION
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RESULTS

Edison@Nersc
Each node: 12-core Intel "lvy Bridge" processor at 2.4 GHz
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THANK YOU!

https://github.com/ytopt-team/ytopt



