
Suggested line of text (optional):

WE START WITH YES.

drhgfdjhngngfmhgmghmghjmghfmf

AUG 4, 2020

Prasanna Balaprakash, Stefan Wild, Paul Hovland, Hal Finkel, Xingfu Wu,
Michael Kruse

Argonne National Lab

Mary Hall

Univ of Utah

Machine-Learning-Based Automatic Performance
Tuning

AUTOMATING EMPIRICAL PERFORMANCE TUNING

2

For a given application and target platform

SEARCH IN AUTOTUNING

▪Alternatives:
– Complete enumeration

• Prohibitively expensive (1050 variants!)
• Unnecessary?

– Pruning
• Careful balancing act (between aggressive and conservative)

▪Helpful (necessary?) precursors: The expert still plays a role!
– Identify variable space (parameters to be tuned, ranges, constraints)
– Quantify measurement limitations and noise
– Incorporate known models and meaningful objectives

3

IS A SOPHISTICATED SEARCH ALGORITHM
NEEDED?

4

[Seymour, You, & Dongarra, Cluster Computing ’08]: Random search performs better
than tested alternatives as the number of tuning parameters grows

Depends on distribution of high-performing variants

5

Depends on structure of the (modeled) search space

IS A SOPHISTICATED SEARCH ALGORITHM
NEEDED?

6

SEARCH AS OPTIMIZATION
Finding the best configuration is a mathematical optimization
problem

x: multidimensional parameterization (compiler type, compiler flags, unroll/tiling
factors, internal tolerances, . . .) for a code variant

f(x): empirical performance metric such as FLOPS, power, or run time (requires a
run)

OPTIMIZATION CHALLENGES

▪Black box, expensive, noisy
▪No derivatives
▪Discontinuity/unrelaxable parameter values
▪Cliffs, multiple local solutions

7

PREVIOUS AUTOTUNING SEARCH
ALGORITHMS
▪ [Seymour, You, & Dongarra, Cluster Computing ’08] and [Kisuki, Knijnenburg, &

O’Boyle, PACT ’00] compared several global and local algorithms
– Random search outperforms a genetic algorithm, simulated annealing, particle

swarm, Nelder-Mead, and orthogonal search
– Large number of high-performing parameter configurations → easy to find one of

them
▪ [Norris, Hartono, & Gropp, Computational Science ’07] used several global and local

algorithms but no comparison
– Nelder-Mead simplex method, simulated annealing, a genetic algorithm

▪ Other local search algorithms without comparison to global search:
– Orthogonal search in ATLAS [Whaley & Dongarra, SC ’98]
– Pattern search in loop optimization [Qasem, Kennedy & Mellor-Crummey SC ’06]
– Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen, Chame,

Hall, & Hollingsworth, IPDPS ’09] 8

PREVIOUS AUTOTUNING SEARCH
ALGORITHMS
▪ [Seymour, You, & Dongarra, Cluster Computing ’08] and [Kisuki, Knijnenburg, &

O’Boyle, PACT ’00] compared several global and local algorithms
– Random search outperforms a genetic algorithm, simulated annealing, particle

swarm, Nelder-Mead, and orthogonal search
– Large number of high-performing parameter configurations → easy to find one of

them
▪ [Norris, Hartono, & Gropp, Computational Science ’07] used several global and local

algorithms but no comparison
– Nelder-Mead simplex method, simulated annealing, a genetic algorithm

▪ Other local search algorithms without comparison to global search:
– Orthogonal search in ATLAS [Whaley & Dongarra, SC ’98]
– Pattern search in loop optimization [Qasem, Kennedy & Mellor-Crummey SC ’06]
– Modified Nelder-Mead simplex algorithm in Active Harmony [Tiwari, Chen, Chame,

Hall, & Hollingsworth, IPDPS ’09] 9

Out-of-th
e-box not custom

MACHINE-LEARNING BASED SEARCH

–Framework:
• Initialization phase

– Random or Latin hypercube
sampling

• Iterative phase
– Fit model
– Sample using the model

10

Example Surrogate Model Fitted to Sampled Performance
(iterative refinement improves the learning model)

BAYESIAN OPTIMIZATION

11

RESULTS

12exploratio
n

exploitatio
n

Edison@Nersc
Each node: 12-core Intel "Ivy Bridge" processor at 2.4 GHz

ACKNOWLEDGEMENTS

13

Exascale computing project

DOE Early Career Research Program,
ASCR

REFERENCES

14

▪ P. Balaprakash, S. M. Wild, and P. D. Hovland. Can search algorithms save large-scale automatic
performance tuning? In Proceedings of the International Conference on Computational Science, ICCS 2011,
volume 4, pages 2136–2145, 2011.

▪ P. Balaprakash, S. M. Wild, and B. Norris. SPAPT: Search Problems in Automatic Performance Tuning. In
Proceedings of the International Conference on Computational Science, ICCS 2012, volume 9, pages
1959–1968, 2012.

▪ P. Balaprakash, S. M. Wild, and P. D. Hovland. An experimental study of global and local search algorithms in
empirical performance tuning. In High Performance Computing for Computational Science - VECPAR 2012,
10th International Conference, Revised Selected Papers, Lecture Notes in Computer Science, pages
261–269. Springer, 2013.

▪ T. Nelson, A. Rivera, P. Balaprakash, M. Hall, P. D. Hovland, E. Jessup, and B. Norris. Generating efficient
tensor contractions for GPUs. In 2015 44th International Conference on Parallel Processing (ICPP), pages
969–978, 2015.

▪ P. Balaprakash, J. Dongarra, T. Gamblin, M. Hall, J. K. Hollingsworth, B. Norris, and R. Vuduc. Autotuning in
high-performance computing applications. Proceedings of the IEEE, pages 1–16, 2018.

THANK YOU!

15

https://github.com/ytopt-team/ytopt

