
Syntax-Guided Program Synthesis

Rajeev Alur

Workshop on Program Synthesis
for Scientific Computing, August 2020

Classical Program Synthesis

2

Specification
“What”

Logical relation ϕ
(x,y)

among input x and
output y

Synthesizer

Implementation
“How”

Constructive proof
of

Exists f. For all x. ϕ
(x,f(x))

Function f(x) such
that

 ϕ(x,f(x))

Church (1957)

Syntax-Guided Search-based Program Synthesis

3

Semantic
Specification

Logical
formula
 ϕ(x,y)

Synthesizer

Implementation

Syntactic
Specification

Set E of

expressi
ons

Search for e
in E

s.t. ϕ(x,e(x))

Motivating Applications

❑ Superoptimizing compilers: Given a program fragment P, find a
functionally equivalent program with resource constraints (e.g. fewer
instructions, or avoid certain expensive instructions)

❑ Program repair: Automatically edit a program locally to fix a bug
(particularly helpful to students in Intro Programming courses)

❑ Proof objects for verification: template-guided synthesis of inductive
invariants, ranking functions, program analysis rules, …

❑ Programming by examples / demonstration: Can non-programmers
communicate intent intuitively?

4

Syntax-Guided Synthesis (SyGuS)

❑ Fix a background theory T: fixes types and operations

❑ Function to be synthesized: name f along with its type
▪ General case: multiple functions to be synthesized

❑ Inputs to SyGuS problem:
▪ Specification ϕ(x, f(x))

Typed formula using symbols in T + symbol f
▪ Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

❑ Computational problem:
Output e in E such that ϕ[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
 with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa

5

www.sygus.org

SyGuS Competition

6

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014

Program
optimiza

tion

Progra
m

repair

Program
ming
by

examples

Invariant
generation

Techniques for Solvers:
 Learning, Constraint solvers, Enumerative/stochastic search

SyGuS Progress

❑ Over 2800 benchmarks
▪ Hacker’s delight
▪ Invariant generation (based on verification competition SV-Comp)
▪ FlashFill (programming by examples system from Microsoft)
▪ Synthesis of attack-resilient crypto circuits
▪ Program repair
▪ Motion planning
▪ ICFP programming competition

❑ Special tracks for competition
▪ Invariant generation
▪ Programming by examples
▪ Conditional linear arithmetic

❑ Current winner: CVC4 (Reynolds et al) search integrated in constraint
solving

7

www.sygus.org

Search and Verify

8

Search
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Goal: Find f such that for all x in D, ϕ(x, f) holds

I = { }; /* Interesting set of inputs */
Repeat
 Learn: Find f such that for all x in I, ϕ(f, x) holds
 Verify: Check if for all x in D, ϕ(f, x) holds

 If so, return f
 If not, find x such that ~ ϕ(f, x) holds, and add x to I

9

Counterexample-guided Inductive Synthesis (CEGIS)

Implementing Search

❑ Given:
Specification ϕ(x, f(x))
Grammar for set E of candidate implementations
Finite set I of inputs

 Find an expression e(x) in E s.t. ϕ(x,e(x)) holds for all x in I

❑ Enumerative search with lots of optimizations for pruning
❑ Symbolic constraints over variables encoding desired expression tree
❑ Stochastic search in spirit of genetic programming
❑ Divide and conquer strategies to build sub-expressions
❑ Partial evaluation to rule candidates before fully expanding them
❑ Establishing unrealizability of synthesis
❑ Type-directed enumeration

10

Acceleration Using Learned Probabilistic Models

❑ Can we bias the search towards likely programs?

❑ Step 1: Mine existing solutions to convert given grammar into a
probabilistic higher-order grammar

▪ Weighted production rules
▪ Conditioned on parent and sibling context
▪ Transfer learning used to avoid overfitting

❑ Step 2: Enumerative search to generate expressions in decreasing
likelihood

▪ Use A* with cost estimation heuristic
▪ Integrated with previous optimizations (equivalence-based pruning…)

With W. Lee, K. Heo, and M. Naik (PLDI 2018)

11

❑ Beyond SMT Solvers: SyGuS-like back-end focused on efficient search,
but decoupled from SMT solvers so as to allow interface with
alternative testing / verification tools

❑ More theories, benchmarks, and applications: tables and relational
queries, floating point arithmetic

❑ Quantitative synthesis and optimization

❑ Applications in scientific computing ??

12

Future Directions

