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Classical Program Synthesis
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Church (1957)



Syntax-Guided Search-based Program Synthesis
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Motivating Applications

❑ Superoptimizing compilers: Given a program fragment P, find a 
functionally equivalent program with resource constraints (e.g. fewer 
instructions, or avoid certain expensive instructions)

❑ Program repair: Automatically edit a program locally to fix a bug 
(particularly helpful to students in Intro Programming courses)

❑ Proof objects for verification: template-guided synthesis of inductive 
invariants, ranking functions, program analysis rules, …

❑ Programming by examples / demonstration: Can non-programmers 
communicate intent intuitively?
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Syntax-Guided Synthesis (SyGuS) 

❑ Fix a background theory T: fixes types and operations

❑ Function to be synthesized: name f along with its type
▪ General case: multiple functions to be synthesized

❑ Inputs to SyGuS problem:
▪ Specification ϕ(x, f(x))

Typed formula using symbols in T +  symbol f 
▪ Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

❑ Computational problem: 
Output e in E such that ϕ[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
    with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa
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www.sygus.org



SyGuS Competition
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SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014
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Techniques for Solvers:
      Learning, Constraint solvers, Enumerative/stochastic search



SyGuS Progress

❑ Over 2800 benchmarks
▪ Hacker’s delight 
▪ Invariant generation (based on verification competition SV-Comp)
▪ FlashFill (programming by examples system from Microsoft)
▪ Synthesis of attack-resilient crypto circuits
▪ Program repair
▪ Motion planning
▪ ICFP programming competition

❑ Special tracks for competition
▪ Invariant generation
▪ Programming by examples
▪ Conditional linear arithmetic

❑ Current winner: CVC4 (Reynolds et al) search integrated in constraint 
solving
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www.sygus.org



Search and Verify
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Goal: Find f such that for all x in D, ϕ(x, f) holds

I = { }; /* Interesting set of inputs */
Repeat
     Learn: Find f such that for all x in I, ϕ(f, x) holds
     Verify: Check if for all x in D, ϕ(f, x) holds

     If so, return f
     If not, find x such that ~ ϕ(f, x) holds, and add x to I
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Counterexample-guided Inductive Synthesis (CEGIS)



Implementing Search

❑ Given:
Specification ϕ(x, f(x))
Grammar for set E of candidate implementations
Finite set I of inputs 

    Find an expression e(x) in E s.t. ϕ(x,e(x)) holds for all x in I

❑ Enumerative search with lots of optimizations for pruning
❑ Symbolic constraints over variables encoding desired expression tree
❑ Stochastic search in spirit of genetic programming
❑ Divide and conquer strategies to build sub-expressions
❑ Partial evaluation to rule candidates before fully expanding them
❑ Establishing unrealizability of synthesis
❑ Type-directed enumeration
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Acceleration Using Learned Probabilistic Models

❑ Can we bias the search towards likely programs?

❑ Step 1: Mine existing solutions to convert given grammar into a 
probabilistic higher-order grammar

▪ Weighted production rules
▪ Conditioned on parent and sibling context
▪ Transfer learning used to avoid overfitting

❑ Step 2: Enumerative search to generate expressions in decreasing 
likelihood

▪ Use A* with cost estimation heuristic
▪ Integrated with previous optimizations (equivalence-based pruning…)

 

With W. Lee, K. Heo, and M. Naik (PLDI 2018)
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❑ Beyond SMT Solvers: SyGuS-like back-end focused on efficient search, 
but decoupled from SMT solvers so as to allow interface with 
alternative testing / verification tools

❑ More theories, benchmarks, and applications: tables and relational 
queries, floating point arithmetic

❑ Quantitative synthesis and optimization

❑ Applications in scientific computing ??
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Future Directions


